Future Utility Business Models: An Economic Perspective

Tooraj Jamasb

Durham University Business School and Durham Energy Institute (DEI)

tooraj.jamasb@durham.ac.uk

ACCC/AER Annual Conference
7-8 August 2015, Brisbane
Overview

- Theories of the firm and DNOs
- Consumer behaviour
- From a DNO to DSO Business Model
- Conclusions
Theories of the Firm

Why firms exist:

- **The Capabilities Approach** - Firm exists because of capabilities and core competencies

- **The Property Rights View** – A particular set of assets (firms) under joint ownership

What determines firm size:

- **Neoclassical view** - Technology, market size, entry barriers

- **Transaction cost view** - Market vs. hierarchy - cost of discovering prices
Scale, Scope, and Growth

❖ Economies of Scale
 • Technical economies: Size of production
 • Non-technical economies: Size of the firm as a whole

❖ Economies of Scope
 • Products complement/substitute in service/quality and reduce average costs.

❖ Firms tend to want to grow
 • Important for lumpy investments and R&D

Griffiths and Wall, Applied Economics 2012
Consumer Behaviour and Social Acceptance
Customer vs. Citizen

- Need to recognize the dual end-user role
 - ‘Customer’ vs. ‘Citizen’
- Need to know when we talk to which
- Consumers are expected to behave in a certain way, so may not respond well
- How policies are framed and communicated matters

Place the focus on ‘empowering’ the consumer in the market place
Behavioural Economics

- Need to better understand consumer behaviour in energy demand and markets.

- Consumers may behave with a budget.

- We value things that we own more highly than equivalent things we could buy.

- They value a windfall gain less than a regular expenditure.

- So, how options/choices are designed/communicated matters for consumer decisions.

The Economist
Consumer - Cost Minimizer or Utility Maximizer

Figure 2: Example: Effect of tariff model within eTellingence

Source: EWE AG.

http://www.e-energy.de/de/etelligence.php
Network Business Model
From DNO to DSO
New Business Models - Context

- Low demand growth (e.g., 0.8% in US)

- Low short-term price elasticity
 - Competition in price can be unprofitable

- *What can a slow growing market offer to DNOs or other actors?*

- Demand for energy services, and its value to consumers, is increasing
DSOs in Europe

2,400 electricity distribution companies

260 million connected customers, of which 99% residential customers and small businesses

240,000 people employed

2,700 TWh a year

Unbundling applies to the more than 190 DSOs with 100,000 and more end users

Source: Eurelectric (2013)
No. of DNOs in Europe - Declining

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of DSOs 1997</th>
<th>Number of DSOs 2003</th>
<th>Number of DSOs 2010</th>
<th>Number of DSOs 2011</th>
<th>Number of DSOs with ≥ 100,000 customers</th>
<th>Total Number of Connected Customers ≤ 1 kV Customers (LV)</th>
<th>1-100 kV Customers</th>
<th>> 100 kV Customers</th>
<th>Total distributed power (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>137</td>
<td>137</td>
<td>138</td>
<td>138</td>
<td>13</td>
<td>5,670,000</td>
<td>5,700,000</td>
<td>150,000</td>
<td>100</td>
</tr>
<tr>
<td>BE</td>
<td>36</td>
<td>29</td>
<td>26</td>
<td>24</td>
<td>15</td>
<td>5,243,796</td>
<td>5,178,890</td>
<td>64,906</td>
<td>0</td>
</tr>
<tr>
<td>BG</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4,915,497</td>
<td>4,909,374</td>
<td>6,123</td>
<td>0</td>
</tr>
<tr>
<td>CY</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>535,050</td>
<td>512,972</td>
<td>646</td>
<td>0</td>
</tr>
<tr>
<td>CZ</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5,837,119</td>
<td>5,812,727</td>
<td>24,258</td>
<td>134</td>
</tr>
<tr>
<td>DE</td>
<td>1000</td>
<td>900</td>
<td>896</td>
<td>880</td>
<td>75</td>
<td>49,294,962</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
<tr>
<td>DK</td>
<td>211</td>
<td>119</td>
<td>76</td>
<td>72</td>
<td>6</td>
<td>3,277,000</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
<tr>
<td>EE</td>
<td>36</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>652,000</td>
<td>651,000</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>ES</td>
<td>540</td>
<td>349</td>
<td>35</td>
<td>7</td>
<td>5</td>
<td>27,786,798</td>
<td>27,682,771</td>
<td>103,630</td>
<td>397</td>
</tr>
<tr>
<td>FI</td>
<td>115</td>
<td>93</td>
<td>85</td>
<td>7</td>
<td>7</td>
<td>3,309,146</td>
<td>3,305,268</td>
<td>3,761</td>
<td>117</td>
</tr>
<tr>
<td>FR</td>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>33,999,393</td>
<td>33,903,690</td>
<td>95,703</td>
<td>0</td>
</tr>
<tr>
<td>GR</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>8,195,725</td>
<td>8,184,378</td>
<td>11,347</td>
<td>0</td>
</tr>
<tr>
<td>HU</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5,527,463</td>
<td>5,520,991</td>
<td>6,334</td>
<td>138</td>
</tr>
<tr>
<td>IE</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2,237,232</td>
<td>2,235,681</td>
<td>1,545</td>
<td>6</td>
</tr>
<tr>
<td>IT</td>
<td>200</td>
<td>195</td>
<td>135</td>
<td>144</td>
<td>2</td>
<td>31,423,623</td>
<td>31,331,656</td>
<td>90,949</td>
<td>1,018</td>
</tr>
<tr>
<td>LT</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1,571,789</td>
<td>1,570,584</td>
<td>1,205</td>
<td>0</td>
</tr>
<tr>
<td>LU</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
<tr>
<td>LV</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>873,856</td>
<td>872,930</td>
<td>926</td>
<td>0</td>
</tr>
<tr>
<td>NL</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>8</td>
<td>8,110,000</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
<tr>
<td>PL</td>
<td>33</td>
<td>27</td>
<td>188</td>
<td>184</td>
<td>5</td>
<td>16,478,000</td>
<td>16,456,000</td>
<td>31,000</td>
<td>300</td>
</tr>
<tr>
<td>PT</td>
<td>4</td>
<td>1</td>
<td>13</td>
<td>13</td>
<td>3</td>
<td>6,137,611</td>
<td>6,113,839</td>
<td>23,772</td>
<td>0</td>
</tr>
<tr>
<td>RO</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2,639,318</td>
<td>2,633,625</td>
<td>5,602</td>
<td>91</td>
</tr>
<tr>
<td>SE</td>
<td>230</td>
<td>190</td>
<td>170</td>
<td>173</td>
<td>6</td>
<td>5,309,000</td>
<td>5,300,000</td>
<td>9,000</td>
<td>n.a</td>
</tr>
<tr>
<td>SI</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td>1</td>
<td>925,275</td>
<td>820,000</td>
<td>105,275</td>
<td>2</td>
</tr>
<tr>
<td>SK</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2,392,418</td>
<td>2,379,672</td>
<td>12,664</td>
<td>82</td>
</tr>
<tr>
<td>UK</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>30,828,266</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
<tr>
<td>NO</td>
<td>200</td>
<td>157</td>
<td>150</td>
<td>150</td>
<td>7</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
</tbody>
</table>

Source: Eurelectric (2013)
Distributed resources:

- DG
- Storage
- Energy efficiency
- Demand response
- Network investments

Well-placed to aggregate the benefits (and costs) of ‘distributed resources’ at low transaction costs
From DNO to DSO - 2

- Can contribute to national load balancing through dispatchable DG and DSM
- Can improve network investment efficiency

- Integration of distributed supply/demand resources
 - Technical integration: Bidirectional power flows
 - Economic integration: Connection or UoS charges
 - “Competition for the market”,
 - Periodic contracts with existing/new bidders, on non-discriminatory basis
 - Small actors can enter through aggregators
 - Auctions
Figure 20 • Generation capacities by grid-level connection in Germany in 2010

Source: IEA (2013)
Figure 24 • Potential outlines of enhanced interfaces between the transmission and distribution level

Market with active distribution level participation and distributed generation

Transmission level

- Infrastructure planning
- Infrastructure operations
- Electricity market

Distribution level

- Aggregated active generation
- Aggregated active loads

Information flow
Physical electricity flow
New flows

Source: IEA (2013)
Features of a DSO Model - Summary

- Aggregates complementary/substitute distributed resources

- Market based
 - ‘Competition for the market’ instead of ‘competition in the market’
 - Periodic auctions

- Low transaction costs

- Benefits from scale and scope

- Utilizes synergies with network investments

- Reduces information asymmetry and uses local network knowledge
From DNO to DSO

Source: Poudineh and Jamasb (2014)
DSO - Revenues and Costs

- **TSO**
 - Residential customers
 - Commercial customers
 - Industrial customers
 - DG operator
 - Storage operator
 - Retail supplier

- **DSO**
 - Connection charge
 - UoS charge
 - Local balancing
 - Data supply
 - Premium reliability

- **Costs**
 - Grid reinforcement
 - UoS charge
 - Ancillary services
 - Energy loss
 - Operation and maintenance

- CDS contract
 - Demand response
 - Energy Efficiency
 - Capacity payment
R&D and Innovation

- Market failure
 - Social discount rate > Private discount rate

- Energy sector among least R&D intensive industries

- Generation - the fastest growing segment is the renewables, which receive support

- Networks - nothing happens unless an allowable cost!

- Allow experiments
 - Ofgem’s Innovation Zones and LCNF schemes
Conclusions

- Theory can guide us to some properties of business models
- Scale and scope matter for distributed ‘resource integration’ - demand/supply/storage
- ‘System integration’ benefits – e.g. grid
- Need for a unifying measure of energy services
- Promote innovation, R&D, experiments
- Technology, regulator, transaction costs define the boundaries between firm (DNO), market, sector

Need for a regulatory model and framework for DSOs
References

• EURELECTRIC (2013).

Thank you

Tooraj Jamasb

Durham University Business School and
Durham Energy Institute (DEI)

tooraj.jamasb@durham.ac.uk