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Introduction and Response Overview 
Open Energy Efficiency​ (OpenEE) appreciates the opportunity to respond to the Australian 
Competition and Consumer Commission’s (ACCC) Consultation Paper ​Consumer Data Right in 
Energy​ (the Paper). OpenEE provides transparent, timely, and secure measurement of load impacts 
from demand-side energy management programs based on metered data. Our analytics platform 
utilizes open-source code (the OpenEEmeter), which tracks and normalizes metered load impacts at 
an individual-building level. Individual projects are aggregated into portfolios that are competitive and 
reliable as a demand-side resource. By generating near real-time performance insights, OpenEE 
enables effective management of traditional regulated programs as well as performance-based 
distributed energy resource (DER) procurement opportunities. OpenEE is both a consumer of energy 
data for a variety of use cases on behalf of our public and private sector clients, and a provider of 
secure and privacy protected platforms for the sharing of data. 
 
OpenEE agrees that providing customers safe, secure, and efficient access to their energy data and 
rating product options is key to fostering informed choice and reducing costs. OpenEE also believes 
that safe, secure and efficient access to data, that respects customer privacy, for accredited data 
recipients (ADR) will be essential for the ACCC to foster modern and competitive energy and resource 
markets. These values, as well as OpenEE’s experience working in emerging DER markets, leads us 
to recommend that the ACCC adopt Model 1 described in the Paper for a secure and centralised data 
platform managed by the Australian Energy Market Operator (AEMO). The initial investment to 
establish this model would ensure consistent and safe data management under the Energy Consumer 
Data Right (Energy CDR) and enable the dedicated implementation of the Energy CDR needed to 
effectively serve consumers and manage a rapidly evolving grid for years to come.  
 
With adoption of Model 1, the ACCC has an opportunity to both enable competition and customer 
choice, while establishing a data framework needed for the AEMO to orchestrate an optimal resource 
mix as increasing penetration of solar and other renewable and distributed energy sources introduce a 
high degree of variability on the grid.  
 
Below OpenEE addresses the specific questions posed in the Paper. 

  

 

http://www.openee.io/


 

Question and Response 

Question 1​: ​Are there any other assessment criteria or relevant considerations which the 
ACCC should use to determine a preferred model for consumers to access their energy 
data under the CDR? 

 
The ACCC should consider the experiences of other jurisdictions that have addressed energy data 
transfer. ​Mission:Data​, an American nonprofit that advocates for customer-friendly energy data access 
policies, has tracked the successes, challenges, and lessons learned when regulated entities have 
been required to implement consumer data sharing requirements. We recommend that ACCC take 
into consideration the ten points included in ​Energy Data: Unlocking Innovation with Smart Policy​ as it 
crafts the Australian Energy CDR framework. 
 

Question 2​: ​Having regard to the assessment criteria, what are the advantages and 
disadvantages of each of the models? 

 
The Paper lays out six assessment criteria and OpenEE provides considerations around each below. 
 

1. User functionality​. The Paper states that “any solution needs to reduce friction for 
consumers.”  OpenEE believes this can be accomplished best with Model 1. Especially when 1

the CDR framework is built beyond the initial priority data, Model 1 would make possible the 
“one-click” functionality that an ADR would need to provide a full suite of services to a 
consumer. In contrast, Model 3 would require a consumer to authorize a number of data flows 
independently. Given the Paper’s observation that, “Research suggests significant numbers of 
energy consumers display low levels of engagement with the competitive retail market,”   2

 
OpenEE suggests that Model 3 cannot be reconciled with the need to provide often 
disengaged consumers functional simplicity. It has been our experience working with 
GreenButton Connect systems in multiple states in the United States, that there are substantial 
transaction costs associated with third parties to build and maintain API connections with each 
retailer or utility. This dramatically increases the cost and reduces the usefulness of an 
“economy-wide” approach, while creating an inconsistent consumer experience. 
 

2. Cost-effectiveness. ​OpenEE acknowledges that Model 3 may lessen data and IT system 
infrastructure build in the public sector, but is likely to be significantly more expensive for 
customers as each retailer invests in their own custom approaches. Given the long-term 
nature and implications of the Energy CDR, cost effectiveness should be considered on a 
long-term basis including its impact on rates to customers. The initial investment in Model 1 to 
establish AEMO as a centralized data repository with automated update protocols via secure 
APIs will permanently streamline the simplicity and usability of the Energy CDR for all parties, 
which will minimize costs and increase benefits over the lifetime of the implementation. 

1 ​Consultation Paper: Data Access Models for Energy Data, p. 32 
2 ​Ibid, p. 32 
 

http://www.missiondata.io/
https://static1.squarespace.com/static/52d5c817e4b062861277ea97/t/5a3a8c66c8302509260492b2/1513786475950/Energy-data-unlocking-innovation-with-smart-policy.pdf


 
 

3. Interoperability. ​Regarding interoperability the Paper states “The model adopted for the 
energy sector will need to facilitate convergence in data-driven services...explicit consent, 
authorisation and accreditation will be required for each data set.”  OpenEE expects that as 3

products and services are integrated between sectors, consumers will expect and demand 
simplicity. OpenEE believes that requiring consumers to provide explicit approvals associated 
with multiple, disparate energy-related data sets, as may be required with Model 3, would 
severely limit the potential for effective, customer-friendly interoperability of the Energy CDR.  
 

4. Efficiency of relevant markets. ​OpenEE believes that any of the models outlined in the 
Paper could in principle help facilitate market competition. However, we caution that the Model 
3 scenario would place the greatest reliance on market actors for whom an effective CDR 
would increase competition. OpenEE’s experiences elsewhere have led us to believe that 
when data sharing responsibilities conflict with core business models, sub-optimal experiences 
for customers and authorized third parties often result.  
 

5. Reliability, security, and privacy.​ OpenEE believes that data safety, security and privacy are 
paramount. Care must be taken upon adoption of any of the models to ensure proper handling 
of data. Methods are established and are continually being enhanced to ensure that large 
datasets can be transferred via secure APIs and stored safely.   4

 
In addition to the core use case of customer data access, we believe there are a range of 
technical approaches that can be used to provide privacy to end customers, while still 
maximizing the value of energy data for public purposes. OpenEE is leading an open-source 
effort in the United States, governed by the Linux Foundation and Joint Development 
Foundation as part of the ​Energy Markets Methods​ (EM2) project, with the National 
Renewable Energy Lab (NREL) and funded by the Department of Energy, that is implementing 
differential privacy​ to enable usage of data for tracking of efficiency savings at a portfolio level, 
carbon accounting, and other use cases. This approach, pioneered by companies like Apple 
and Google, can enable data sharing that does not compromise customer privacy. 
 
Given Australia's grid and climate goals, we strongly urge that the ACCC take into 
consideration use cases that go beyond the direct sharing of customer data, including the 
need for robust data systems to inform fluid grid operations with a high saturation of variable 
generation.  
 

6. Flexibility and extensibility. ​The need to handle data beyond the initial NEM priority data 
sets highlights the benefits of a centralised model. OpenEE believes that as the Energy CDR 
expands, the Model 1 approach will prove to be clearly superior. Model 1 would allow for the 
establishment of repeatable and automated data transfer for all potential sources of data. In 
Model 1, the issue of data extraction and transfer, including scheduling and timing, need only 
be addressed once. An “on-demand” gateway functionality as in Model 2 is more likely to 

3 Ibid, p. 33 
4 ​OpenEE's cloud based servers adhere to the highest internationally recognized security standards including 
but not limited to: ISO 27001, SOC 1 and SOC 2/SSAE 16/ISAE 3402 (Previously SAS 70 Type II), PCI Level 1, 
FISMA Moderate and Sarbanes-Oxley (SOX). Adherence to these protocols and standards will ensure that a 
central data repository to serve the Energy CDR can be created and managed safely and securely. 
 

https://www.energymarketmethods.org/
https://en.wikipedia.org/wiki/Differential_privacy


 
encounter errors that would lead to ad hoc functional issues as more data sets and sources 
are managed. For instance, the ability of the gateway to fulfill an on-demand request could be 
impacted if/when data holders exercise even routine maintenance on internal data systems. 
Again, Model 3 is an inferior option for flexibility and extensibility as each new data set or data 
holder would require additional processes and procedures to manage interactions with an 
ADR. Regarding flexibility, only Model 1 would enable ADR to routinely plan and assess 
modern grid planning functions (see response to Question 5 below).  

 

Question 3​: ​What are the likely implementation/compliance costs for market participants 
(including accredited data recipients) under each of the models, including costs associated 
with IT system changes or data storage? 

  
OpenEE recognizes the urgent need to provide ADRs data to support market innovation, non-wires 
alternatives to grid infrastructure, and decarbonization targets. While there are implementation and 
compliance costs for all three models outlined in the Consultation Paper, Model 3, the economy-wide 
CDR model, introduces much more uncertainty in keeping implementation and compliance costs as 
low as possible.  
 
Within the parameters of Model 3, the potential for data and vendor lockout, where stakeholders are 
priced out of the market, goes uncombated. Having to source information directly from existing data 
holders provides additional layers of complication. If a retailer controls access to data generated from 
their devices, will they each charge for access and thus disincentivize data sharing, locking out those 
who want to innovate? Will a standard protocol for sharing data, such as Green Button Connect (see 
Question 5 for further detail), be selected to help promote the utilization of consistent data? Will each 
API be different and have unique integration and security requirements? Issues including cost 
requirements for data exchanges, regulating the secure transfer, and investigating breaches in 
sensitive data will all have to be accounted for in Model 3.  
 

Question 4​: ​What additional requirements should the ACCC consider including in the CDR 
rules for the energy sector if the gateway model is adopted? 

 
OpenEE has no additional requirements to recommend.  
 

Question 5​: ​What emerging technologies do stakeholders believe will have an impact on 
the energy sector with respect to the CDR? 

 
The rapid expansion of solar generation in Australia has created a mid-day dip in demand from 
traditional resources along with an evening demand ramp that is becoming consistently steeper. 
Addressing this growing variability on the grid will require more effective and targeted use of 
distributed balancing resources. Storage, dispatchable demand response, electric vehicles, and 
energy efficiency can all play an important role in addressing the “duck curve,” but these DERs need 
to be managed on a time-and-locational basis. As the operator of the Australian National Electricity 
Market and the Wholesale Electricity Market, AEMO is in the unique position to orchestrate an optimal 
integration of DERs with traditional supply-side resources. AEMO will need to address 

 



 
decarbonization goals, identify opportunities for targeted penetration of beneficial DERs, and direct 
load shaping to keep costs reasonable for consumers. To serve these new and vital functions 
effectively, AEMO will need consistent, reliable, and up-to-date granular data that aligns with the CDR, 
as well as assistance from ADRs to provide expertise, specialty services, and innovation. 

Through the CDR, Australia has the opportunity to establish the framework and invest in the 
technology that will help facilitate the secure use of energy data. Specific emerging technologies and 
approaches are being developed and utilized to ensure security and privacy when storing, handling, 
and transferring large amounts of sensitive data. These include: 
 

Green Button​: The Green Button initiative is an industry-led effort that responds to a 2012 US 
Presidential call-to-action to provide utility customers with easy and secure access to their energy 
usage information in a consumer-friendly and computer-friendly format for electricity, natural gas, 
and water usage. 
 
Green Button Connect My Data​: The Green Button Connect My Data (CMD) standard is the 
energy-industry standard for enabling easy access to, and secure sharing of, utility-customer 
energy- and water-usage data. Utilities providing standards-based Green Button 
customer-consumption and billing data can provide customers new data-driven services, 
programs, and platforms; digitally empowering customers with the ability to securely transfer their 
data to third-party solution providers who can further assist them in monitoring and managing 
energy or water usage. 
 
SEAT Differential Privacy​: The Secure Algorithm Testbed for Energy Data Fusion project (SEAT)
 is a collaboration between National Renewable Energy Laboratory (NREL), which is serving as 5

the lead laboratory, and the Lawrence Berkeley National Laboratory (LBNL), San Francisco 
Department of the Environment, and OpenEE. The SEAT was initiated specifically to utilize new 
data sources to inform operational energy analyses. Please see the Applicable Research section 
of Question 8 for further detail.  
 
Building Energy Data Exchange Specification​: The Building Energy Data Exchange 
Specification (BEDES, pronounced "beads" or /bi:ds/) is a dictionary of terms, definitions, and field 
formats which was created to help facilitate the exchange of information on building characteristics 
and energy use. It is intended to be used in tools and activities that help stakeholders make 
energy investment decisions, track building performance, and implement energy efficient policies 
and programs. 

  

Question 6​: ​What are the cost differences to participants of providing data once a day (to 
an AEMO repository) or on demand? 

  
With effective APIs there should be very little cost difference between a once-per-day uploading 
cadence compared to updating on an as-needed basis in reaction to on-demand requests. The former 
would provide a more structured model that ensures the AEMO repository is consistently updated. It 

5 ​awarded by the U.S. Department of Energy Energy Efficiency and Renewable Energy (EERE) 
Building Technologies Office (BTO) 
 



 
should be straightforward for the AEMO, working with other data holders and accredited data 
recipients, to establish automated data transfer protocols on a daily basis via secure APIs. 
 

Question 7​: ​What is the competitive impact, if any, of accessing data through AEMO rather 
than through a retailer? 

 
AEMO has a unique opportunity to enable Australia’s demand-side resource, load balancing, and 
decarbonization markets. Accurate, granular system and usage data as well as secure access to 
those data are vital for cost-effective decarbonization and behind-the-meter flexibility. However, 
consistently accessing data has often posed a major barrier for policymakers, retailers, system 
operators, local governments, and market participants, who will all need to work together to ensure 
energy remains affordable as Australia modernizes and decarbonizes the energy sector. 
 
AEMO can securely and efficiently facilitate the transfer of differential privacy protected energy data 
into the market, allowing market innovators to operate in the most cost-effective manner. The Model 1 
approach can enable data access to ADRs who stand to provide innovative solutions at an 
individual-customer and system level. There are a range of important use cases enabled through 
Model 1 that would better inform policy and create responsive markets without compromising 
customer privacy, including: 
 
Energy Savings Calculations 

Site-based energy savings calculations using open-source methods like CalTRACK  require access to 6

pre- and post-intervention consumption data. The growth of Green Button services in the U.S. has 
made it easier for individual customers to authorize building-level data sharing, but connecting 
customers through Green Button Connect remains a substantial barrier. These services are also 
mostly useful for managing active program participants. However, many energy efficiency 
implementers lack historical metered performance data, making it difficult to bid competitively or 
forecast accurately as the focus shifts to time-and-locational grid needs. This lack of access to 
historical performance data stands in the way of financing and insurance agreements and the efficacy 
of both traditional energy efficiency and demand response schemes and new pay-for-performance 
based approaches. With Model 1, AEMO and qualified ADRs can provide the analytics needed for 
scalable energy efficiency targeted toward grid needs. 
 

Energy Benchmarking 

Both public sector policy and market actors in energy efficiency, including aggregators, program 
implementers and contractors, are consistently frustrated by a lack of energy profiling data that would 
enable them to make operational decisions about which customers are good candidates for energy 
efficiency interventions. This data availability becomes especially important in performance-based 
settings, where customer targeting and potential analysis are essential competitive advantages. 
 
In many cases, these market actors may have access to their customers’ energy data, but the full 
value of this data cannot be realized in the absence of context. One way to provide this context is 

6 www.caltrack.org 
 



 
through the energy consumption profiles for groups of customers of the same type and in the same 
geographical location. 
 
These energy profiles can be represented by metrics that are derived from consumption data, 
adjusting for weather and occupancy. These metrics, usually comprising coefficients of statistical 
models and uncertainty values, provide a wealth of information about load profiles (e.g. heating load, 
baseload and cooling load) and energy use predictability (whether the building’s energy consumption 
can be sufficiently represented by a statistical model). 
 
Comparison Group Savings 

Where possible, researchers utilize Randomized Control Trials (RCT) to evaluate the impact of 
interventions, especially where whole populations might be involved in a trial. However, in many 
cases, implementing an RCT design is not practical. A more realistic research design may involve 
selecting a similar set of untreated buildings and differencing the consumption between the treated 
and untreated sets. Moreover, access to data for groups of untreated customers enables longitudinal 
tracking of energy impacts by aggregators, program implementers and administrators, net of 
population-level changes. This type of tracking can empower performance-based schemes by 
enabling risk quantification and mitigation. 
 
The process of establishing a comparison group often requires matching the load shape 
(consumption) profile of the treated building to a set of untreated buildings within the same 
geographical area (as well as potentially other characteristics). Generally, a minimum of five similar, 
untreated buildings are selected for each treated building. This process requires access to individual 
building consumption data from non-treated buildings. If individual building owners in non-treated 
buildings were required to provide permission to access their data, this research design approach 
would be practically infeasible.  
 

Building Model Testing 

As building models are increasingly utilized to predict the impact of distributed energy resources on 
grid resources, gaining insight into the actual load shape of targeted buildings increases accuracy of 
forecasting and planning. In particular, it is desirable to significantly improve upon the artificial load 
shape profiles that are currently available for different types of buildings (e.g., the load shape of a 
typical laundromat). 
 

Building Characteristics 

Certain attributes associated with building energy usage can be estimated algorithmically. For 
instance, algorithms of varying complexity and accuracy can detect solar PV installations, recently 
purchased electric vehicles, or presence of periods of with uncharacteristically high usage. These 
attributes could be used to target schemes to customers who can benefit the most from a specific 
intervention. 
 

  

 



 
Load Shape and Carbon Accounting 

A city, local government, or aggregator would like to know the average monthly load shape for a 
sector or targeted portfolio to understand consumption patterns or estimate carbon footprint. 24-hour 
load shapes that represent broad patterns over the course of a months or across many buildings can 
be useful even in the absence of more granular - and more sensitive - full time series of AMI data. 
 

Question 8​: ​Are there any other issues that stakeholders wish to raise? 

 
OpenEE reiterates our recommendation that the ACCC adopt Model 1 described in the Paper for a 
secure and centralised data platform managed by AEMO. This approach most effectively supports the 
objectives outlined in the CDR. With the growing demand for data in all forms, AEMO is best suited to 
serve as the central data holder that can safely and securely share CDR data directly to ADRs. This 
approach lends itself to simplicity, reducing potential complications experienced by individual 
consumers.  
 
Additionally, Model 1 has the potential to better position AEMO in remaking Australia’s power 
infrastructure into a modern energy grid. As stated in their 2018 report, ​Operational and market 
challenges to reliability and security in the NEM​, AEMO has a well documented understanding of the 
rapid transformation currently taking place in Australia's energy markets. A changing mix of energy 
resources to include renewables like solar and other DERs is already presenting a number of grid 
balancing issues, exacerbating system ramps to meet peak demand, and increasing the risk of 
disruption to service. AEMO has stated that data driven processes such as improved forecasting, 
strategic deployment of DERs, and better systems integration will bolster its ability to properly 
maintain the National Electricity Market. These proactive options can only work with the proper 
capacity to use readily available energy data at an increasingly granular level.  
 
Without jeopardizing the security of Australian consumers’ data, Model 1 has the potential to provide 
the most benefits to all stakeholders.  

 
 
Applicable Research​: ​Creating a secure testbed for algorithms fusing public and protected data to 
predict energy use and potential savings 
 
OpenEE is part of a group currently working on grant-funded research to develop a Secure Energy 
Algorithm Testbed (SEAT) that allows energy algorithms to run on multiple public or protected data 
sources to generate useful outputs while protecting secure information.  
 
This multi-year project develops the Secure Energy Algorithm Testbed (SEAT, described in the 
response to Question 5) that can merge data from multiple sources and allow algorithms, including 
Open Source CalTRACK / OpenEEmeter based advanced measurement and verification (also known 
as M&V 2.0) calculations, to run on protected data while ensuring that sensitive information remains 
secure. This open source effort is part of the​ Energy Market Methods Consortium​ under the umbrella 
of the Linux Foundation Energy, and Joint Development Foundation. 
 
The SEAT system will support the growing number of M&V 2.0 applications evaluating energy savings 
from installed upgrade measures. Additional applications will be unlocked by giving researchers 
 

https://www.aemo.com.au/-/media/Files/Media_Centre/2018/AEMO-observations_operational-and-market-challenges-to-reliability-and-security-in-the-NEM.pdf
https://www.aemo.com.au/-/media/Files/Media_Centre/2018/AEMO-observations_operational-and-market-challenges-to-reliability-and-security-in-the-NEM.pdf
https://www.energymarketmethods.org/


 
access to sensitive real-world data in a framework that allows algorithms to transition quickly from 
benchtop prototypes to production use. 
 

 
Explanation of Privacy Preserving Mechanisms 

A design based on Differential Privacy is proposed for SEAT. The mechanism underlying this 
technology was first described in 2006 by ​Cynthia Dwork​ and has received extensive academic 
treatment since then. There have been a number of industry deployments, notably by Uber and 
Berkeley in 2018 ​for running arbitrary SQL queries against rider data ​[​Github​], a project that was 
motivated by GDPR.  
 
The basic workings of Differential Privacy are intuitive to understand. Imagine that you would like to 
find out the average annual energy consumption for a group of buildings. These consumption values 
would range from zero to some maximum, ​C​max​. ​One way to protect the privacy of the buildings in this 
query would be to add noise to the result such that it was not possible to ascertain the contribution of 
an individual building, even if you knew the consumption of all the other buildings. The maximum 
amount that a single building can contribute to the average, ​Δ​A​max​, ​is 
 

Δ​A​max ​= ​(​C​max ​- 0)​ ​/​ ​N 
 
where N is the number of buildings in the query. You would want to add about ​Δ​A​max ​noise to the 
resulting average to hide the contribution of any building to the overall average. 
 
Differential Privacy provides a framework for generating this noise. An additional parameter, ​ε​ is 
introduced to quantify the privacy guarantees. Lower epsilon values result in higher privacy 
guarantees at the cost of usefulness of results. 
 
  

 

https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
https://www.youtube.com/watch?v=pk_DCSUayDA
https://github.com/uber/sql-differential-privacy


 
The most common Differential Privacy mechanism is the Laplace Mechanism. In our example, the 
noise would be drawn from a Laplace distribution with mean zero and parameter ​b​ equal to 
 

b = ​Δ​A​max ​/ ε 
 
The probability distribution function would look something like the following, where many values of 
noise would come from around zero, but there was a reasonable chance that values further away from 
zero were chosen. 

 
Figure 3: ​Example Laplace distribution 

 
Finally, to further make the case for the relative simplicity of the Laplace mechanism, here is an 
example implementation in Python for computing a differentially private mean: 

 
import numpy as np 
 
s = np.genfromtxt("consumptions.txt", delimiter=",") 
 
N = len(s) 
df = (max(s) - min(s)) / N 
e = 1.0 
b = df / e 
 
def differentially_private_mean(s): 

return np.mean(s) + np.random.laplace(0, b) 
 
 
For an approachable source for additional details about the Laplace Mechanism see ​Orazio et al. 
Differential Privacy for Social Science Inference​. 
 
Differential Privacy research provides tools for extending this approach to more complex queries and 
datasets as well as additional guidance about how much noise to add. A number of existing systems 
exist for Differential Privacy for SQL queries, such as ​Microsoft’s PINQ​ (Privacy Integrated Queries) 
and ​Uber/Berkeley’s SQL Differential Privacy Query Rewriter​. 

 

http://hona.kr/papers/files/DOrazioHonakerKingPrivacy.pdf
http://hona.kr/papers/files/DOrazioHonakerKingPrivacy.pdf
https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-pinq/
https://github.com/uber/sql-differential-privacy


 
 

Privacy Budget and Risk 

A fundamental concept in Differential Privacy is the “privacy budget”. Every anonymization technique, 
from k-anonymity, to the 15/15 rule, to Differential Privacy, reveals some amount of information about 
the individuals in the dataset. For example, imagine if one were able to find out the consumption 
information for 14 of the 15 individuals in a dataset anonymized by the 15/15 rule; it would be possible 
to then deduce that final participants energy usage. This sort of attack is not only theoretical – ​Netflix’s 
de-identified movie review database was re-identified​ using publically available IMDB data. Even more 
shocking was ​the re-identification of Maryland patient data​, which was de-identified in accordance with 
HIPAA standards, but turned out to allow researchers to uncover the health information of the 
Governor when cross-referenced with public voting records. In contrast to other privacy techniques, 
Differential Privacy quantifies the risk of each individual contained in a dataset ​no matter how much 
additional data is released​. This risk is quantified as ​ε, ​the privacy parameter. 
 
As part of the development of the SEAT platform, OpenEE will evaluate the privacy risks of 
configuration of each of these modules against real consumption datasets in order to provide 
guidance to administrators. As confidence and understanding of the privacy approaches used by 
SEAT grows, additional statistics that require the more advanced Noise Modules and Privacy 
Accountant can be deployed. 

Summary Statistic Design 
The basic architecture of the SEAT platform anticipates returning privacy-preserving summary 
statistics for groups of sites. The following table maps Use Cases to candidate summary statistics. 
 
These candidate statistics will be explored in detail in proof-of-concept and prototype development. In 
particular, the required accuracy for useful outputs will be characterized. It is possible that not all 
proposed summary statistics will be possible to implement because of high sensitivity or small sample 
sizes. However, initial analysis suggests that it should be realistic to implement many of them, and the 
analysis used to characterize this initial batch of use cases will allow the rapid development of further 
use cases. Appendix A includes details of our analysis characterizing the application of the Laplace 
Mechanism to savings and consumption data. 
 

Summary Statistic Use Case 

Average Monthly Energy Savings Energy Savings Calculations 
 
Targeting 

Average Annual Hourly Traces Building Model Testing 
 
Load Shape / Carbon 

Monthly Comparison Group Savings 
 

Comparison Groups 

Model Coefficients 
 

Energy Profiling and Benchmarking 
 

 

https://www.cs.utexas.edu/~shmat/shmat_oak08netflix.pdf
https://www.cs.utexas.edu/~shmat/shmat_oak08netflix.pdf
https://fpf.org/wp-content/uploads/The-Re-identification-of-Governor-Welds-Medical-Information-Daniel-Barth-Jones.pdf


 

Appendix A: Applying Laplace Mechanism for Differential Privacy of Energy Analytics 
Here we attempt to characterize the error introduced by the Laplace Mechanism for two 
representative queries to the SEAT system. 
 
Our analysis considers computing the differentially private mean of two quantities: NMEC savings and 
average hourly consumption. 
 
The specific algorithm for computing differentially private means is detailed in ​Orazio et al. ​Differential 
Privacy for Social Science Inference​, with the relevant section copied below: 

 

http://hona.kr/papers/files/DOrazioHonakerKingPrivacy.pdf
http://hona.kr/papers/files/DOrazioHonakerKingPrivacy.pdf
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