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A Executive Summary 

1. The Customer Access Network (CAN) is the copper telecommunications 
network from Telstra’s local exchange buildings to customers’ premises.  
The CAN is (simplistically) comprised of five major physical components, 
which includes equipment within the telephone exchange building, conduit 
containing main network cables, pillars, conduit containing distribution 
network cables, and lead-ins. 

2. Equipment in the telephone exchange is the main point of aggregation at 
which all of the cabling serving an exchange area must terminate.  The 
area served by one telephone exchange is known as an exchange service 
area (ESA). Each ESA is divided into a number of distribution areas (DAs).  
Each DA is served by a pillar which acts as another point of aggregation in 
an ESA.   

3. The TEA model calculates the forward-looking efficient costs of providing 
the CAN within Band 2 (urban) ESAs in Australia.  A commonly held 
engineering view that relates to the TEA model and other engineering 
models of a CAN, is that DA design (the number of and dimensions of 
distribution areas and the location of pillars in DAs) collectively, has 
minimal impact on CAN cost. 

4. To test this hypothesis we need to look at all factors affecting investment 
cost as generated in the TEA model.  We split factors into three parts 
affecting Band 2 ESAs. 

• How the size of the CAN in Band 2 affects CAN investment cost;  

• How characteristics of the ESAs in Band 2 affects CAN investment cost; 
and, 

• How changes to DA design in Band 2 impact on the total investment 
costs for the CAN. 

5. We examine these effects using regression analysis which is a commonly 
used statistical technique which in this case is applied to data from version 
1.2 of the TEA model. The analysis finds that:  

• The regression results indicate that investment in the CAN, as 
generated by the TEA model, exhibit slightly increasing returns to 
scale.  A 1 per cent increase in inputs used to construct the CAN could 
support a 1.04 expansion in the CAN.  

• the characteristics of the network in an ESA has a small positive impact 
on investment costs of the average ESA ―  a 1% change in the average 
perimeter of an ESA or the density and dispersion of an ESA will impact 
the average ESA Band 2 investment costs by 0.044%, 0.007% and 
0.012% respectively; 

• DA design has no practical impact on the investment cost of the CAN:  

- While the regression analysis shows that ESAs with 1% longer 
average distance from the pillar to the copper centre will have 
0.027% lower investment costs, in practice, pillars are typically 
located on or near the boundary of the DA; and, 
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- Increasing the average DA size by 25% would reduce the predicted 
investment costs in Band 2 by 0.020% (or less than 1c per service per 
month). 

6. Overall we find that the size of the CAN in band 2 largely explains 
investment cost as predicted using the TEA model.  Variations in the 
characteristics of the network served in Band 2 explain a small portion of 
CAN investment costs.  Given the immaterial size of the saving achieved 
from an impractical restructure of DA design in Band 2, we conclude that 
DA design does not materially impact the investment cost of the CAN. 
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B Introduction 

7. The TEA model calculates the forward-looking efficient costs of providing 
the CAN – the copper telecommunications lines from Telstra’s local 
exchange buildings to customers’ premises (the unbundled local loop) – 
within Band 2 areas of Australia.1  The CAN is (simplistically) comprised of 
five major physical components.  Sequentially from the exchange to the 
customers premises these include: 

• The customer side block on the Main Distribution Frame (MDF), intra-
exchange cabling and associated facilities in the exchange building; 

• Conduit containing main network cables; 

• Pillars;2 

• Conduit containing distribution network cables; and, 

• Lead-ins.  

8. The MDF in the telephone exchange is the main point of aggregation at 
which all of the CAN cabling with an ESA must terminate.  Each ESA is 
divided into a number of DAs.  Each DA is served by a pillar which acts as 
another point of aggregation in an ESA.   

9. Distribution network cables connect individual customers in the DA to a 
pillar and main network cables join the pillars within an ESA to the 
exchange building.  The distribution and main network cables are housed 
in PVC conduits that are installed underground. Lead-ins are copper cables 
that connect customers’ premises to the distribution cables in the street. 

10. The TEA model takes as given the several real-world characteristics of 
Telstra’s CAN infrastructure, including: 

• Number and location of customer premises; 

• The number of and the dimensions of DAs and the location of pillars; 

• The number of and dimensions of ESAs and the location of exchange 
buildings in the ESAs; and, 

• The subset of the conduit routes that take the minimum distance 
between premises, pillars and exchanges. 

11. In reviewing the TEA model the ACCC has come to the conclusion that 
assuming the location of pillars in DAs are fixed accords with best practice 
engineering rules and practices.  The ACCC noted: 

                                                   
1  For greater detail of the TEA model V1.2 see the Telstra Efficient Access (TEA) Model Overview. 
2  Within the TEA model V1.2 cabinets are either eliminated or converted to pillars in the analysis.  This does not impact on this 
regression analysis as cabinets can serve the role of a pillar. 
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In recognition of actual circumstances, the ACCC has generally accepted the 
following simplifications to the fully forward-looking TSLRIC approach: certain 
key features of an existing network such as exchanges and pillars are kept 
constant. This is often referred to as the scorched node approach where the 
locations of particular nodes are assumed to be fixed. 3 

The ACCC considers that given the starting point of scorched node and the need to 
model a copper network, the TEA model is broadly based on best practice 
engineering rules and practices.4 

12. Within any ESA there may be a large degree of variation in the design of 
the DAs that comprise it.  This is because real world obstacles exist such as 
water courses, private property, roads, recreational areas etc., which 
govern the actual routes and locations where real-world CAN infrastructure 
can exist.  This means that from ESA to ESA: 

• The sizes of DAs varies, both in terms of number of addresses and 
geographic area served; 

• The number of DAs is different for each ESA; and, 

• Pillars, pits, manholes and joints are situated at different relative 
locations within each DA. 

13. This analysis quantitatively measures, using a statistical regression model 
and economic theory of a firm’s cost minimising incentive, how changes to 
DA design impact on the total investment costs for the CAN as calculated 
by version 1.2 of the TEA model.  In particular, the analysis examines:   

• The variation in DA design between different band 2 ESAs;  

• Whether such variations in DA design are the cause of differences in 
the total investment costs for different ESAs; and, 

• If DA design characteristics are found to impact on total investment 
costs, the extent of the impact that DA design has upon total 
investment costs. 

14. The remainder of this report is structured as follows.  Section C outlines 
what regression analysis is and why it is the most appropriate technique in 
this context. Section D addresses the issue of functional form for the 
regression analysis.  The regression equation, data, results and associated 
analysis are set out in section E and Section F concludes the analysis. 

C Regression modelling (why and how) 

15. There are two approaches that could be used to establish the impact of DA 
design on the cost of constructing the CAN as calculated by the TEA model.  
These include: 

                                                   
3  ACCC (2008), Assessment of Telstra’s Unconditioned Local Loop Service Band 2 monthly charge undertaking: Draft Decision, 
November 2008, at page 36. 
4  Ibid, pp 72. 
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• Simulation analysis using the TEA model.  This would require altering 
the DA design in the TEA model and then re-calculating the investment 
cost of the CAN; and, 

• Regression modelling to establish the stable mathematical 
relationship between DA design variables and investment costs using 
all DAs in Band 2 ESAs as the data set.  

16. Simulation analysis would be a very time consuming task.  For example, 
the effect of pillar location on CAN construction costs could be analysed by 
altering the location of the pillar in each DA, and then calculating 
construction cost given the new pillar locations.  This would require 
engineers to determine whether the alternative pillar location is feasible 
(that is, that there are no obstacles to installation) and, if so, to redesign 
the cable routing to the alternative pillar location to ensure that the 
resulting network would be functional.  Such assessments/calculations 
would need to be undertaken for each of the approximately 50,000 DAs in 
the TEA model. 

17. In contrast, regression modelling can be used to test whether the 
variability in the characteristics of the CAN across ESAs can explain the 
variability in CAN investment costs across ESAs as calculated by version 1.2 
of the TEA model.  Regression modelling is extremely robust and has been 
widely accepted among statisticians for many years.  It is most commonly 
used in applied fields such as the physical, health, social and life sciences.  
For example, the Journal of Econometrics5, amongst others, is a global 
monthly publication that exists primarily to advance the science of 
regression analysis in applied economics and business problems.  

18. Regression analysis determines the relationships between variables that 
‘best fits’ the data. For example, assume that there is a linear relationship 
between CAN investment cost and the number of premises connected to 
the CAN. The graphs below illustrate the relationships that a regression 
analysis might produce (represented by the red lines) given a set of 
hypothetical data (given by the blue dots).  Diagram 1 illustrates what the 
relationship might look like if the relationship between investment cost 
and number of premises connected is positive (Case 1) and negative (Case 
2). The red line in each of the cases is ‘best fit’ because it most closely 
approximates the relationship between the two variables, that is, it 
minimises the sum of the squared vertical distances between the observed 
values for the data and the line of best fit ( u ).  

19. The ‘vertical distance’ depicted in both cases in figure 1 and defined as u in 
paragraph 18 is known as a random ‘disturbance’.  It is the amount the best 
fit line and the actual data for which we are estimating a stable 
relationship are ‘disturbed’ from their stable relationship as estimated by 
the regression. 

20. The disturbance from the line of best fit arises for several reasons, primarily 
because for every possible variable that influences total CAN investment 
cost data may not be available or measurable.  Therefore the disturbances 
or vertical distances u  attempt to capture how much information in total 
CAN investment cost is unobserved, does not exists or is unable to be 

                                                   
5  http://www.elsevier.com/wps/find/journaldescription.cws_home/505575/description?navopenmenu=-2 
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explained by the data that already exists.  Therefore, the smaller the 
vertical distances u the less information that influences total CAN 
investment cost is unobserved and the stronger the regression relationship. 

Figure 1: Regression of linear functional form 

 

 

21. The strength of the relationship derived from the regression analysis is 
captured by a metric know as ‘R-squared’ which makes use of the sum of 
the vertical squared distance6 between the data points and the line of best 
fit.  The R-squared metric is equal to 1 if, in our example, the line of best fit 
perfectly describes the relationship between CAN investment cost and the 
number of premises connected to the CAN, that is, if all of the blue dots in 
diagram 1 are positioned on the red line and the sum of the vertical 
squared distance  is equal to zero.  Conversely if the relationship is found to 
be weak the R-squared measure will be closer to 0 and the sum of the 
vertical squared distance will be large. 

22. The R-squared statistic therefore represents the proportion of the variation 
in y that is explained by the regression equation.  For example if R-squared 
is 0.80, then 80% of the variation in y is explained by the regression 
equation 

23. The econometrician William H Greene has noted that: 

In terms of the values one encounters in cross-sections7, an R2(R-squared) of 
0.5 is relatively high.8 

D Functional Form 

24. The standard (linear) functional form for a regression relationship of the 
type hypothesised in paragraphs 18 to 20 can be expressed algebraically as 
follows. 

                                                   
6 For a complete analysis of how the random disturbance is used to calculate the R-squared metric see Greene, W., H..Econometric 
Analysis, Sixth Edition, Pretence Hall, 2008, pp 32-38. 
7 A cross-section is a data set that is taken at one particular point in time across different individuals, or firms etc. 
8 Greene, op. cit, pp. 38. 
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uxbbY ++= 110 ; 

Where: 

Y  = investment cost (the dependent variable);  

X1  = the number of premises (the explanatory variable); 

b0  = the value of investment if the number of premises is zero (the constant 
coefficient); 

b1  = the extent to which investment cost changes as the number of premises 
changes (the coefficient of the explanatory variable); and, 

u     = the difference between the value of investment cost expected by the 
regression analysis and the value actually observed (the random 
disturbance). 

25. The regression model described in paragraph 24 and Figure 1 has a linear 
functional form.  It is referred to as a linear9 functional form because the 
regression line that it exhibits is a straight line. The interpretation of the 
regression, in words, is that ‘X has a linear impact on y’. Each time one of 
the x variables changes by 1 unit (meters, centimetres, kilograms, premises 
etc) investment costs (y) change by b1 units, and this is true no matter 
what the values of x and y are. 

26. The drawback of the linear functional form for a regression is that it allows 
for only a linear relationship between variables.  In our example, the linear 
functional form implies that each time the number of premises goes up by 
one unit investment cost goes up by b1 dollars.  This relationship would not 
fit the data well if the cost of adding each additional premise decreases (or 
increases) with the total number of premises already served.  For example, 
the cost of building the CAN network to the first premise may be more or 
less expensive than the millionth premise.  Thus the linear functional form 
model imposes severe restrictions on the relationship between CAN 
construction costs and CAN characteristics. 

27. A less restrictive functional form is the logarithmic functional form.  This 
has the following standard form: 

 

uxbbY ++= )ln()ln( 110 . 

28. This functional form has the same basic components as the standard linear 
functional form (and the x and y variables are the same).  However, in the 
logarithmic model the x1 and y variables are transformed by taking their 
natural logarithm (ln) prior to the regression analysis and prior to 
obtaining a value for b1.   

29. Taking the natural logarithm of the x1 and y variables, as far as regression 
modelling is concerned, changes the interpretation to be placed upon the 
estimated value of b1.   That is, b1 is now interpreted as the percentage 
change in Y given a 1 percent change in X1.  

                                                   
9 Linear within regression analysis technically refers to linearity in the parameter estimates b0, b1 etc. Nonlinearity of the data 
such as quadratic terms do not make the model non-linear. 
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30. Diagram 2 illustrates the logarithmic functional form describing the 
relationship between investment cost and the number of premises 
connected to the CAN. This functional form allows the effect of the number 
of premises on investment cost to vary depending on the number of 
premises served.   

Figure 2: Regression of logarithmic functional form 

 
 

31. One difficulty with the models so far outlined is that they include only one 
explanatory variable and also do not allow for the possibility that an 
explanatory variable could have an indirect effect on the dependent 
variable via its effects on other explanatory variables.  For example, as the 
number of premises increase it would be reasonable to assume that the 
length of distribution and mains conduit would also change, however not 
necessarily at a constant rate.  This indirect effect is known as an 
interaction effect. 

32. Interaction effects and non-constant rates of change in variables can be 
accommodated in regression analysis by way of a third functional form for 
a regression model, know as a transcendental logarithmic (translog) 
functional form.  The translog functional form is an extended version of the 
basic logarithmic functional form outlined in paragraph 27. 

33. The translog functional form, for the case of 1 explanatory variable (x1) 
can be expressed as follows. 

 

( ) uxxbxbbY +++= )ln()ln(21)ln()ln( 1111110  

where: 

Y   = investment cost;  

x1    = the number of premises; 

b0, b1, b11 = coefficients estimated by regression analysis 

u     = the random disturbance. 
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34. The term ln(x1)ln(x1) in the equation above makes it possible to not only 
establish what percentage change in y1 results from a percentage change 
in x1 (which is what the standard logarithmic functional form allows), but 
also allows for the relationship between the x and y percentage changes to 
be different for different values of x.  For example, the percentage change 
in investment cost given a 1% increase in premises from 1000 premises can 
be different with the translog functional form to the percentage change in 
investment cost given a 1% increase in premises from 1 million premises. 

35. Therefore the more variables a functional form can posses the more 
desirable and ‘flexible’ it is.  As the well known empirical economist Larry 
Lau has noted: 

Flexibility of functional form is desirable because it allows the data the 
opportunity to provide information about critical parameters. An inflexible 
functional form often prescribes the values, or at least the range of values, of 
critical parameters (which should ideally be) free to attain any set of theoretically 
consistent values.10 

36. The translog functional form is what Lau classes as a ‘flexible functional 
form’11 as the translog functional form imposes minimal restrictions on the 
relationship between12  the response variable (CAN investment costs) and 
the explanatory variables (inputs into the construction of the CAN and its 
design characteristics). 

37. The translog function can also be used to concurrently accommodate the 
environment in which the CAN must exist, such as its geographic location, 
all within one regression equation.  For example, it is possible within one 
regression model to test and account for differences in investment costs 
between the states and territories of Australia, and test whether moving 
the placement of pillars has an impact on investment costs. 

38. An example of a three variable translog functional form regression, which 
includes two explanatory variables and one environmental variable, can 
be written as below:13 

( ) ( )
uDStatexxb

xxbxxbxbxbbY

i
+++

++++=

∑
=

7

12112

2222111122110

)ln()ln(

)ln()ln(21)ln()ln(21)ln()ln()ln(
 

where: 

Y   = investment cost;  

x1, x2   = the direct explanatory variables of investment cost, here assumed 
   to be two; 

State = an environmental variable that captures for example if an ESA is in 
   a particular state or territory of Australia; 

                                                   
10  Lau, L. (1986). “Functional Forms of Econometric Model Building.” In Griliches, Z. And Intriligator, M.D. eds., Handbook of 
Econometrics,V.3, pp.1513-1566. 
11  Technically a flexible functional form is one in which the functional form can approximate an arbitrary twice continuously 
differentiable function to the second order.   
12  This is not an exhaustive list of the properties of flexible functional forms, however the remaining properties are extremely 
technical in nature and will not add to the understanding of why such forms are appropriate. 
13 This form applies when symmetry is assumed.  That is for example ln(a)ln(b) = ln(b)ln(a), therefore there is no need to include 
the additional symmetric variables and estimate additional parameters in the regression (nor mechanically possible to estimate 
the regression). 
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b0, b1, b2, b11, b22, b12 and D are coefficients estimated by regression analysis; 

u      = the random disturbance. 

39. In the following section the, data used in the modelled translog functional 
form regression is summarised and the regression model results are 
presented. 

E The regression equation, data, regression results and 
interpretation 

E.1 Regression equation 

40. The TEA model provides information in relation to investment costs for 
each ESA in band 2 areas. The following are likely possible drivers of the 
cost in each ESA: 

• Main and distribution conduit and cable; 

• Joints used to connect lengths of cable; 

• Pillars, pits, and manholes; 

• The number of premises connected to the CAN;  

• The length of lead-in cable (cable from the customer premises to the 
distribution cable in the street); 

• The relative location of pillars; 

• The average size of a DA; 

• The perimeter length of an ESA 

• The density of each ESA; 

• The average dispersion of premises in an ESA; and, 

• The state or territory of Australia each ESA is located. 

41. The major components of the CAN such as cable and conduit lengths, 
joints, pits, pillars, and manholes etc will exhibit a degree of correlation.  
For example, correlation between conduit and cable lengths are expected 
since cable is laid inside conduit, and generally a number of joints are 
required for each given length of cable.   

42. A high degree of correlation between explanatory variables in a regression 
is known as multicollinearity.  Multicollinearity can cause statistical 
problems for the results of a regression if it is not addressed by 
aggregating, removing or using proxy variables for those variables that are 
highly multicollinear.14 To avoid any potential problems associated with 

                                                   
14 See Griffiths, W. E., Hill C., R., and Judge, G., G., (1993), Learning and Practicing Econometrics .John Wiley & Sons, pp. 435. 
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multicollinearity of the explanatory variables of CAN investment cost, the 
major components of the network (conduit, cable, joints, pits, pillars, and 
manholes) were aggregated into a single quantity index of the CAN.  A 
quantity index allows for a simple interpretation of all of the components 
of the CAN without loss of any explanatory power, Appendix 1 outlines the 
quantity index. 

43. Environmental variables were included in the cost function to control for 
factors relating to each ESA ― density, dispersion and perimeter length.  In 
addition interaction terms were constructed from the environmental 
variables.  Interaction terms capture the effect on CAN investment costs 
from the natural interaction of two environmental variables.  It may be the 
case that variables such as density and dispersion of an ESA or dispersion 
and perimeter measure of an ESA are inter-related.  For example, if two 
ESAs are of identical area, but one ESA servers a larger number of 
customers, the ESA with more customers will have a higher density 
(calculated as customers divided by area).   Further if one of the ESAs 
consist mainly of free-standing buildings spread out evenly (greater 
dispersion) throughout the ESA and the other consists primarily of 
apartment blocks with multiple units within each block situated in a small 
area of the ESA, the former will have greater dispersion. The interaction of 
density with dispersion will have distinctly different impacts within each 
ESA.  Including such interaction terms allows for the possible impact of 
these relationships on CAN investment costs for each individual ESA. 

44. Variables relating to DA design were added to the list of investment cost 
drivers to test the effect that these variables have on investment costs.  
These variables were – the relative location of pillars, the average size of 
DAs, a squared DA Size variable and an interaction term to examine if pillar 
location and DA size are related.  Including a squared term of the ‘DA_Size’ 
variable allows for the impact of ‘DA_Size’ on investment cost to vary with 
changes in ‘DA_Size’. 

45. There may also be factors that influence construction costs that are 
particular to certain states or territories in Australia.  These could include 
different street layouts, council restrictions and suburb design between 
states/territories etc.  To account for differences between states a series of 
binary qualitative variables known as dummy variables are included, one 
for each state or territory excluding the chosen state/territory as the basis 
of comparison which is implicitly represented by the constant term in the 
model.  The variable takes the value of 1 if the ESA is in the specified 
state/territory and 0 otherwise and is interpreted relative to the chosen 
base state/territory of comparison 

46. The translog functional form cost model that captures these investment 
cost drivers and DA design variables is written as follows:  
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Where:  

iTC   = Total cost in the ith ESA in Band 2; 

β   = Constant; 

iINDEXCAN _      = Quantity index measure of the components of the CAN in the ith 

   ESA; 

iNSW   = Equals 1 if ESA is in New South Wales, zero otherwise; 

iQLD   = Equals 1 if ESA is in Queensland, zero otherwise; 

iNT   = Equals 1 if ESA is in the Northern Territory, zero otherwise; 

iWA   = Equals 1 if ESA is in Western Australia, zero otherwise; 

iSA   = Equals 1 if ESA is in South Australia, zero otherwise; 

iVIC   = Equals 1 if ESA is in Victoria, zero otherwise; 

iTAS   = Equals 1 if ESA is in Tasmania, zero otherwise; 

iLOCATION  = The average relative position of the pillars in DAs in the ith ESA;15 

iSIZEDA _  = The average size of a DA in the ith ESA; 

iDENSITY   = The density of the ith ESA; 

iPERIMETER  = The perimeter length of the ith ESA; 

                                                   
15  The relative position is calculated as the linear distance between the pillar location and the average geographic location of 
premises in the DA connected to that pillar. 
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iDISPERSION = The average dispersion of a DA in the ith ESA; 

iμ   = random disturbance term; 

nl   = Natural logarithm operator; and, 

α , D ,ς &λ  = are parameters to be estimated via the least squares method. 

 

47. We note that a typical cost function would also include input price 
variables, such as the prices of capital, labour and materials used in the 
construction of the CAN.16 In the TEA model, the prices of capital, labour 
and materials in the underlying vendor prices for plant and equipment do 
not vary across ESAs. Because input prices are constant across ESAs, an 
input price variable would be indistinguishable from the constant term (β ) 
in the regression model. 

E.2 Data 

48. Data for this study are derived from version 1.2 of the TEA model and the 
Cable Plant Records 2 (CPR2) system.  Table 1 gives the definitions of each 
variable used in the regression modelling. 

                                                   
16 See for example Bloch. H., Madden. G. and Coble-Neal. G., (2001). The cost structure of Australian telecommunications. The 
Economic Record vol. 239, Issue 77. pp. 338-350 and Kiss, F., and Lefebvre, B.J. (1987), “Econometric Models of Telecommunications 
Firms: A Survey”, Economique, Paris, Vol. 38, No. 2, pp. 307-374. 
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Table 1:  TEA model data used 

Variable Description No. Obs. Description Source 

TC Total Cost 584 

Sum of CAN 
investment 
costs for each 
ESA calculated 
by the TEA 
model v1.2.  All 
costs incurred 
in building the 
Band 2 network 
are included. 

TEA model V1.2 

CAN_Index 
Output 
quantity 
index. 

584 

Main and 
distribution 
conduit length, 
pits, pillars, 
joints plus 
length of cable 
and lead-ins 
formed into a 
quantity index  

Calculated from TEA 
model V1.2 

DNSW** Dummy New 
South Wales 

173 =1 & 
411 = 0 

DQLD Dummy 
Queensland 

118 = 1 & 
466 = 0 

DNT 
Dummy 
Northern 
Territory 

3 = 1 & 581 
= 0 

DSA 
Dummy 
South 
Australia 

34 = 1 & 550 
= 0 

DWA 
Dummy 
Western 
Australia 

63 = 1 & 521 
= 0 

DSA 

Dummy 
Australian 
Capital 
Territory 

13 = 1 & 571 
= 0 

DVIC Dummy 
Victoria 

167 = 1 & 
417 = 0 

DTAS Dummy 
Tasmania 

13 = 1 & 571 
= 0 

Dummy 
variable which 
equals 1 if the 
ESA is within 
the state and 0 
otherwise. 

Calculated from TEA 
model V1.2 

Location 
Pillar 
Location 

584 

Actual pillar 
location in a DA 
relative to the 
copper centre17 
of that DA. 

Calculated from CPR2 

DA Size Average size 
of a DA 

584 
The average 
size of a DA in 
each ESA. 

Constructed from TEA 
model V1.2 data as the 
ratio of area in an ESA 
to the number of DAs. 

                                                   
17 The copper centre is the geographically-weighted average location of customer addresses in each DA. 
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Density Density of 
ESA 

584 The density of 
each ESA. 

Constructed from TEA 
model V1.2 data as the 
ratio of premises in an 
ESA to area. 

Perimeter 
Perimeter 
length of the 
ESA 

584 
The perimeter 
length of each 
ESA. 

Calculated from CPR2 

Dispersion 

Average 
customer 
distance from 
the copper 
centre in a DA 

584 

The average 
distance of 
customers from 
the copper 
centre of each 
DA within the 
ESA 

Calculated from CPR2 

** The Australian Capital Territory is the base dummy variable of comparison. 

 Table 2 provides summary statistics and units of measurement of the variables used 
 in the statistical analysis and obtained from the TEA model V1.2 and CPR2 databases 
 respectively. 

Table 2:  Descriptive statistics 

Abbreviation Units of measurement Mean S.D. 

TC Dollars ($) $34,811,866 $19,496,063 

CAN_Index Percentage (%) 0.635 0.353 

DNSW 0.296 0.457 

DQLD 0.005 0.071 

DNT 0.202 0.402 

DWA 0.108   0.310 

DSA 0.058 0.234 

DVIC 0.286 0.452 

DTAS 

N/A 0 or 1 

0.022 0.145 

Location Metres (m) 192.523 57.994 

DA Size Square kilometres 
(km2) 

0.362 0.317 

Density Premises per square 
kilometre (p.km2) 

616.415 421.221 

Perimeter Metres (m) 196.589 105.544 

Dispersion Metres (m) 151.424 54.452 

 

E.3 Regression results 

49. The initial regression results of the estimated model of CAN investment 
costs, including all variables listed above are given in Table 3.   
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 Table 3:  Initial regression results for the CAN investment cost model 

Variable Coefficient Standard Error P-Value 

β  
17.523* 0.477 0.000 

( )IINDEXCAN _ln  
0.965* 0.013 0.000 

( )( )2_ln IINDEXCAN  
-0.002 0.004 0.630 

NSWD1  
0.045* 0.011 0.000 

QLDD2  
0.056* 0.012 0.000 

NTD3  
0.103* 0.024 0.000 

WAD4  
0.061* 0.012 0.000 

SAD5  
0.059* 0.014 0.000 

VICD6  
0.057* 0.012 0.000 

TASD7  
0.063* 0.016 0.000 

( )ILOCATIONln  
-0.054* 0.013 0.000 

( )ISIZEDA _ln  
0.065 0.056 0.247 

( )( )2_ln ISIZEDA  
0.012* 0.004 0.008 

( ) ( )II SIZEDALOCATION _lnln  
-0.018 0.010 0.057 

( )IDENSITYln  
0.112* 0.057 0.048 

( )IPERIMETERln  
0.055 0.065 0.396 

( )IDISPERSIONln  
-0.061 0.084 0.470 

( ) ( )II PERIMETERDENSITY lnln  
-0.015* 0.005 0.002 

( ) ( )II DISPERSIONDENSITY lnln  
-0.007 0.010 0.478 

( ) ( )II DISPERSIONPERIMETER lnln  0.017* 0.009 0.042 

R-Squared^ 0.9971   

* Individually statistically significant at the 5% level of significance.  
^ Adjusted R-squared statistic reported. 

 

50. At the bottom of Table 3 is a row titled R-squared18 which, as explained in 
paragraph 21, is a measure of how well the regression line fits the 
underlying data.  As the R-squared for this regression model is 0.9971 we 

                                                   
18 The reported statistic is the adjusted R-squared. 
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can conclude that the model provides a very good approximation of the 
factors driving CAN investment costs in the TEA model V1.2. 

51. The column in Table 3 headed Coefficient shows the impact of the variable 
given in the first column on the natural logarithm of investment cost, 
holding all other variables in the model including interaction variables 
constant.  In general a negative coefficient implies the variable has a 
negative relationship with investment cost and a positive coefficient 
implies a positive relationship.  However, where a direct driver of 
investment cost appears more than once (for example, ‘DA_Size’ and the 
square of ‘DA_Size’) in the translog regression, the sign of an individual 
coefficient has no direct interpretation.  It is the net impact of all of the 
coefficients of the direct driver in combination that determine the variables 
overall impact. 

52. The column headed P-value can be used to represent the proportion of 
times we could expect to reject the null hypothesis (that is, that the value 
of a coefficient is equal to zero) when in fact the coefficient was equal to 
zero.19  In this analysis we have chosen to use a 5 per cent significance 
level.  Thus coefficients with a p-value at or below 0.05 are “statistically 
significant” and are marked with a single asterisk in Table 3 above. 

53. Several statistical tests were undertaken on these results to determine 
whether any refinement to the hypothesised model of CAN investment 
costs were necessary. In particular, given that the variables of the translog 
cost function enter the regression a number of times, an F-test20 can be 
performed to assess whether those variables have a ‘joint’ statistical effect 
on investment costs.  The results of the F-test are presented in Table 4 
below.  All jointly statistically significant coefficients are marked with an 
asterisk. 

 

                                                   
19 Technically speaking the P-value is defined as the probability of rejecting the null hypothesis that a variable is statistically 
equal to zero, when in fact the null hypothesis is true i.e. the variable is equal to zero. 
20  The F-test is a statistical test that assesses whether the coefficients of a group of variables are jointly statistically significant. 
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Table 4:  F-test for the joint exclusion of variables  

Null Hypothesis Test Statistic P-Value Result of test 

H0: That all CAN_Index 
coefficients are jointly equal 
to 0. 

2994.460 * 0.00 All CAN_Index 
coefficients are jointly 
statistically different to 
0. 

H0: That all Location 
coefficients are jointly equal 
to 0. 

9.244* 0.002 All Location coefficients 
are jointly statistically 
different to 0. 

H0: That all DA_Size variable 
coefficients are jointly equal 
to 0. 

24.119* 0.000 All DA_Size coefficients 
are jointly statistically 
different to 0. 

H0: That all Density 
coefficients are jointly equal 
to 0. 

3.564* 0.014 All Density coefficients 
are jointly statistically 
different to 0. 

H0: That all Perimeter 
coefficients are jointly equal 
to 0. 

14.622* 0.000 All Perimeter 
coefficients are jointly 
statistically different to 
0. 

H0: That all Dispersion 
coefficients are jointly equal 
to 0. 

4.797* 0.002 All Dispersion 
coefficients are jointly 
statistically different to 
0. 

* Jointly statistically significant at the 5% level of significance. 

 

54. The results of the F-tests indicate that jointly all variables in the translog 
cost function are statistically significant and aide in explaining CAN 
investment costs in some combination 

55. The results in Tables 3 and 4 demonstrate that the model in Table 4 is 
statistically justified. 

E.4 Interpretation of results 

56. The overall effect of a statistically significant variable on investment cost 
can be summarised by an elasticity.  Elasticities provide a convenient way 
of summarising the interpretation of the total impact of a variable of 
interest when interaction effects are included in a regression model (for 
example, ‘a 1 percent change in x brings about a b percent change in y’).  

57. We can calculate the elasticity of investment cost with respect to the size 
of the network put in place.  The average value of the output cost elasticity 
is 0.96621 which is interpreted as a 1% increase in outputs brings about a 
0.966% increase in costs.  The inverse of this elasticity,22 is a measure of the 

                                                   
21 T-tests of the null hypothesis of lqn + lqn2 = 1 show that the output cost elasticity is statistically different to 1 even at the 1% 
level of significance, with a p-value of 0.0023. 
23 See Diewert, W. E. (1974), “Applications of Duality Theory”, pp106-171 in Frontiers of Quantitative Economics, Volume 2, M. D. 
Intriligator and D. A. Kendrick (eds.), Amsterdam: North-Holland. 
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returns to scale of the CAN investment function.  Thus the calculated scale 
elasticity is 1.04 which suggests the existence of slightly increasing returns 
to scale for the investment in the CAN.23 

58. We note that the implied scale elasticity of 1.04 is in line with previously 
estimated scale elasticities for telecommunications networks.  Bloch, 
Madden and Coble-Neal (2001),24 for example, estimate scale elasticities for 
Australian telecommunications networks in the order of 0.94 to 1.14.  Kiss 
and Lefebvre (1987)25 survey 36 telecommunications cost studies from the 
1950’s to the mid-1980’s, in which scale elasticities are calculated.  The 
reported range of scale elasticities is from 0.94 to 1.75. 

59. The results of the estimated cost function also indicate that the 
characteristics of the network also impact on investment cost of the CAN.  
The impact (all else equal) of each, relative to the average ESA in Band 2, is 
summarised: 

• ESAs with 1% higher densities cost 0.007% less; 

• ESAs with 1% longer perimeters cost 0.044% more; and, 

• ESAs with 1% greater average DA dispersion cost 0.012% less. 

60. In relation to the final point above, it follows that, if two ESAs have 
identical lengths of conduit, copper, trenching etc and the same number of 
pits, pillars, manholes and premises etc, but one ESA has a larger 
dispersion,  then the ESA with the larger dispersion will cost less.  This is 
because in practice (all else being equal) ESAs with larger dispersion 
contain less concrete and asphalt.  Thus, it follows that (all else equal) ESAs 
with greater dispersion have lower breakout and reinstatement costs than 
ESAs with lower dispersion, and hence have lower costs. 

61. In addition, we find that DA design has a statistically significant but very 
small theoretical impact on investment cost.  For example, the elasticity of 
the ‘Location’ variable is calculated as -0.027 implying that ESAs with 1% 
longer average distance from the pillar to the copper centre will have 
0.027% lower investment costs.  Thus, it follows that placing pillars close to 
the copper centre of a DA will result in higher investment cost. In practice, 
pillars are typically located on main roads on or near the boundary of the 
DA (as this is where the main network is typically placed). To move a pillar 
off the main road toward the copper centre of the DA would require 
additional main network costs being incurred.  

62. The calculated elasticity of the DA-Size variable is -0.048.  To increase the 
average size of a DA holding the size of an ESA constant requires reducing 
the number of DA’s in an ESA. Reducing the number of DAs in each ESA by 
16 (and those ESAs with 16 DAs or less, to 1) results in the average size of 
DAs increasing by approximately 25%. This hypothetical change would 
result in the investment cost reducing by 0.020% (or less than 1 cent per 
month). 

                                                   
 
24 Bloch et al Opt. Cit., (2001) 
25 Kiss et al Op. Cit. , (1987) 
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63. Given the size of this saving and the extent of the restructure that would be 
required to achieve it, we conclude that DA design has no practical impact 
on the investment cost of the CAN. 

F Conclusion 

64. Overall, the analysis presented shows that the regression analysis 
(presented in Table 3) explains investment costs very well.  In particular, 
the explanatory variables chosen for the analysis explain greater than 99 
percent of the variation in the log of CAN investment costs between ESAs.  
The regression also displays a measure of RTS in line with previous 
research, which adds further validity to the regression model.  

65. In terms of the characteristics of an ESA, the results of the estimated cost 
function also indicate that the characteristics of the network impact on 
investment cost of the CAN in Band 2.  

66. In terms of DA design, the analysis indicates that DA design variables have 
an extremely small impact on Band 2 investment costs. In particular 
keeping all other variables constant: 

• The location of pillars has no material impact on investment costs; 
and, 

• The average size of DAs has no material impact on investment costs.  

67. These results show that changing the DA design in the TEA model would 
not materially impact investment costs. 
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APPENDIX A: The Conduit Index 

68. A measure of the aggregate of: 

• Mains and distribution conduit;  

• Mains and distribution cable; 

• Lead-in cable; 

• Pits; 

• Pillars; and, 

• Manholes, 

was derived.   

69. As the cost of (for example) a kilometre of mains conduit differs from the cost of a 
kilometre of distribution conduit or the costs of manholes of different sizes differs the 
aggregate of quantities can not be found simply by adding the different quantities of 
the CAN in each respective ESA.  A measure of the quantities across ESAs can be 
derived via the calculation of an index.   

70. While there are a variety of index number formulations that could be used to derive a 
measure of the quantities of the CAN in each respective ESA a Tornqvist quantity 
index formulation was implemented in this study as this index formulation provides 
an exact aggregation of the quantities of the CAN in each respective ESA where the 
underlying function is a translog function as used in this study. 

71. The Tornqvist log-change quantity index is written as follows. 
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Where: 

T
StQ  = is the quantity index; 

1iw  = is the cost share of the first output of the CAN in the ith ESA; 

2iw  = is the cost share of the second output of the CAN in the ith ESA; 

inw  = is the cost share of the nth output of the CAN in the ith ESA; 

itq  = is the quantity of the first output of the CAN in the ith ESA; 

isq  = is the quantity of the second output of the CAN in the ith ESA; 

isq  = is the quantity of the nth output of the CAN in the ith ESA; 

ln  = the natural logarithm operator.  

72. When the quantity of outputs across ESAs is expressed as an index, one ESA has to be 
chosen as the base ESA.  In the base ESA the index has a value of one.  It is possible 
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that the value of the quantity index for ESAs other than the base ESA could be 
affected by the ESA chosen to be the base ESA.  To avoid this possibility a so called 
transitive Tornqvist quantity index was used in this study.  Coelli et al provide a 
discussion of why transitive index numbers are required when calculating aggregates 
across different entities such as different ESAs26. 

                                                   
26 Tim Coelli, D.S Prasada Rao and George Battese 2002, An Introduction to Efficiency and Productivity Analysis, Kluwer Academic 
Publishers, pp. 84-87. 
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